We have the following indirect implication of form equivalence classes:

264 \(\Rightarrow\) 339
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
264 \(\Rightarrow\) 202 Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic
202 \(\Rightarrow\) 40 clear
40 \(\Rightarrow\) 43 Consistency results for $ZF$, Jensen, R.B. 1967, Notices Amer. Math. Soc.
On cardinals and their successors, Jech, T. 1966a, Bull. Acad. Polon. Sci. S'er. Sci. Math. Astronom. Phys.
43 \(\Rightarrow\) 339 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
264:

\(H(C,P)\): Every connected relation \((X,R)\) contains a \(\subseteq\)-maximal partially ordered set.

202:

\(C(LO,\infty)\): Every linearly ordered family of non-empty sets has  a choice function.

40:

\(C(WO,\infty)\):  Every well orderable set of non-empty sets has a choice function. Moore, G. [1982], p 325.

43:

\(DC(\omega)\) (DC), Principle of Dependent Choices: If \(S\)  is  a relation on a non-empty set \(A\) and \((\forall x\in A) (\exists y\in A)(x S y)\)  then there is a sequence \(a(0), a(1), a(2), \ldots\) of elements of \(A\) such that \((\forall n\in\omega)(a(n)\mathrel S a(n+1))\).  See Tarski [1948], p 96, Levy [1964], p. 136.

339:

Martin's Axiom \((\aleph_{0})\): Whenever \((P\le)\) is a non-empty, ccc  quasi-order (ccc means every anti-chain is countable) and \({\cal D}\) is a family of \(\le\aleph_0\) dense subsets of \(P\), then there is a \({\cal D}\) generic filter \(G\) in \(P\).

Comment:

Back