We have the following indirect implication of form equivalence classes:
| Implication | Reference |
|---|---|
| 331 \(\Rightarrow\) 332 |
Topologie, Analyse Nonstandard et Axiome du Choix, Morillon, M. 1988, Universit\'e Blaise-Pascal |
| 332 \(\Rightarrow\) 343 |
Topologie, Analyse Nonstandard et Axiome du Choix, Morillon, M. 1988, Universit\'e Blaise-Pascal |
| 343 \(\Rightarrow\) 62 | clear |
| 62 \(\Rightarrow\) 102 | The Axiom of Choice, Jech, 1973b, page 162 problem 11.12 |
Here are the links and statements of the form equivalence classes referenced above:
| Howard-Rubin Number | Statement |
|---|---|
| 331: | If \((X_i)_{i\in I}\) is a family of compact non-empty topological spaces then there is a family \((F_i)_{i\in I}\) such that \(\forall i\in I\), \(F_i\) is an irreducible closed subset of \(X_i\). |
| 332: | A product of non-empty compact sober topological spaces is non-empty. |
| 343: | A product of non-empty, compact \(T_2\) topological spaces is non-empty. |
| 62: | \(C(\infty,< \aleph_{0})\): Every set of non-empty finite sets has a choice function. |
| 102: | For all Dedekind finite cardinals \(p\) and \(q\), if \(p^{2} = q^{2}\) then \(p = q\). Jech [1973b], p 162 prob 11.12. |
Comment: