We have the following indirect implication of form equivalence classes:

1 \(\Rightarrow\) 408
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
1 \(\Rightarrow\) 408 Bemerkungen zu einem Lemma von E. Engeler und A. Robinson, Felscher, W. 1964, Z. Math. Logik Grundlagen Math.

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
1:

\(C(\infty,\infty)\):  The Axiom of Choice: Every  set  of  non-empty sets has a choice function.

408:

If \(\{f_i: i\in I\}\) is a family of functions such that for each \(i\in I\), \(f_i\subseteq E\times W\), where \(E\) and \(W\) are non-empty sets, and \(\cal B\) is a filter base on \(I\) such that

  1. For all \(B\in\cal B\) and all finite \(F\subseteq E\) there is an \(i\in I\) such that \(f_i\) is defined on \(F\), and
  2. For all \(B \in\cal B\) and all finite \(F\subseteq E\) there exist at most finitely many functions on \(F\) which are restrictions of the functions \(f_i\) with \(i\in I\),  
then there is a function \(f\) with domain \(E\) such that for each finite \(F\subseteq E\) and each \(B\in\cal B\) there is an \(i\in I\) such that \(f|F = f_i|F\).

Comment:

Back