We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
174-alpha \(\Rightarrow\) 9 |
Horrors of topology without AC: A non-normal orderable space, van Douwen, E.K. 1985, Proc. Amer. Math. Soc. note-49 |
9 \(\Rightarrow\) 10 | Zermelo's Axiom of Choice, Moore, 1982, 322 |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
174-alpha: | \(RM1,\aleph_{\alpha }\): The representation theorem for multi-algebras with \(\aleph_{\alpha }\) unary operations: Assume \((A,F)\) is a multi-algebra with \(\aleph_{\alpha }\) unary operations (and no other operations). Then there is an algebra \((B,G)\) with \(\aleph_{\alpha }\) unary operations and an equivalence relation \(E\) on \(B\) such that \((B/E,G/E)\) and \((A,F)\) are isomorphic multi-algebras. |
9: | Finite \(\Leftrightarrow\) Dedekind finite: \(W_{\aleph_{0}}\) Jech [1973b]: \(E(I,IV)\) Howard/Yorke [1989]): Every Dedekind finite set is finite. |
10: | \(C(\aleph_{0},< \aleph_{0})\): Every denumerable family of non-empty finite sets has a choice function. |
Comment: