Hypothesis: HR 37:
Lebesgue measure is countably additive.
Conclusion: HR 323:
\(KW(\infty,WO)\), The Kinna-Wagner Selection Principle for a family of well orderable sets: For every set \(M\) of well orderable sets there is a function \(f\) such that for all \(A\in M\), if \(|A| > 1\) then \(\emptyset\neq f(A)\subsetneq A\). (See Form 15.)
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal N1\) The Basic Fraenkel Model | The set of atoms, \(A\) is denumerable; \(\cal G\) is the group of all permutations on \(A\); and \(S\) isthe set of all finite subsets of \(A\) |
\(\cal N2\) The Second Fraenkel Model | The set of atoms \(A=\{a_i : i\in\omega\}\) is partitioned into two element sets \(B =\{\{a_{2i},a_{2i+1}\} : i\in\omega\}\). \(\mathcal G \) is the group of all permutations of \( A \) that leave \( B \) pointwise fixed and \( S \) is the set of all finite subsets of \( A \). |
\(\cal N2(n)\) A generalization of \(\cal N2\) | This is a generalization of\(\cal N2\) in which there is a denumerable set of \(n\) element sets for\(n\in\omega - \{0,1\}\) |
\(\cal N2^*(3)\) Howard's variation of \(\cal N2(3)\) | \(A=\bigcup B\), where\(B\) is a set of pairwise disjoint 3 element sets, \(T_i = \{a_i, b_i,c_i\}\) |
\(\cal N2(n,M)\) Mostowski's variation of \(\cal N2(n)\) | \(A\), \(B\), and \(S\)are the same as in \(\cal N2(n)\) |
\(\cal N2(\aleph_{\alpha})\) Jech's Model | This is an extension of \(\cal N2\) in which \(A=\{a_{\gamma} : \gamma\in\omega_{\alpha}\}\); \(B\) is the corresponding set of \(\aleph_{\alpha}\) pairs of elements of \(A\); \(\cal G\)is the group of all permutations on \(A\) that leave \(B\) point-wise fixed;and \(S\) is the set of all subsets of \(A\) of cardinality less than\(\aleph_{\alpha}\) |
\(\cal N2(\hbox{LO})\) van Douwen's Model | This model is another variationof \(\cal N2\) |
\(\cal N6\) Levy's Model I | \(A=\{a_n : n\in\omega\}\) and \(A = \bigcup \{P_n: n\in\omega\}\), where \(P_0 = \{a_0\}\), \(P_1 = \{a_1,a_2\}\), \(P_2 =\{a_3,a_4,a_5\}\), \(P_3 = \{a_6,a_7,a_8,a_9,a_{10}\}\), \(\cdots\); in generalfor \(n>0\), \(|P_n| = p_n\), where \(p_n\) is the \(n\)th prime |
\(\cal N9\) Halpern/Howard Model | \(A\) is a set of atoms with the structureof the set \( \{s : s:\omega\longrightarrow\omega \wedge (\exists n)(\forall j > n)(s_j = 0)\}\) |
\(\cal N10\) Höft/Howard/Mostowski Model | (The model is a variation of\(\cal N3\).) \(A\) as ordered by \(\precsim\) has the same order type as therationals; \(\cal G\) is the group of all order automorphisms of \(A\); \(S\) isthe set of all subsets \(E\) of \(A\) that satisfy the following threeconditions:\item{1.} \(E\) is well ordered by \(\precsim\).\item{2.} \(E\) is bounded in \(A\).\item{3.} If \(b:\alpha\to E\) is an order preserving bijection from\(\alpha\) onto \(E\) and if \(\lambda < \alpha\) is a limit ordinal then\(\{b(\beta) : \beta < \gamma\}\) has no least upper bound in\((A,\precsim)\).\par\noindentIn <a href="/articles/H\"oft/Howard-1994">H\"oft/Howard [1994]</a> it is shown that, in \(\cal N10\), everyDedekind finite set is finite (9 is true), but \((A,\precsim)\) is alinearly ordered set with no infinite descending sequences that cannot bewell ordered (77 is false) |
\(\cal N12(\aleph_1)\) A variation of Fraenkel's model, \(\cal N1\) | Thecardinality of \(A\) is \(\aleph_1\), \(\cal G\) is the group of allpermutations on \(A\), and \(S\) is the set of all countable subsets of \(A\).In \(\cal N12(\aleph_1)\), every Dedekind finite set is finite (9 is true),but the \(2m=m\) principle (3) is false |
\(\cal N12(\aleph_2)\) Another variation of \(\cal N1\) | Change "\(\aleph_1\)" to "\(\aleph_2\)" in \(\cal N12(\aleph_1)\) above |
\(\cal N15\) Brunner/Howard Model I | \(A=\{a_{i,\alpha}: i\in\omega\wedge\alpha\in\omega_1\}\) |
\(\cal N17\) Brunner/Howard Model II | \(A=\{a_{\alpha,i}:\alpha\in\omega_1\,\wedge i\in\omega\}\) |
\(\cal N18\) Howard's Model I | Let \(B= {B_n: n\in\omega}\) where the \(B_n\)'sare pairwise disjoint and each is countably infinite and let \(A=\bigcup B\) |
\(\cal N22(p)\) Makowski/Wi\'sniewski/Mostowski Model | (Where \(p\) is aprime) Let \(A=\bigcup\{A_i: i\in\omega\}\) where The \(A_i\)'s are pairwisedisjoint and each has cardinality \(p\) |
\(\cal N23\) Howard/Mostowski Linearly Ordered Model | This model is amodification of \(\cal N3\) |
\(\cal N24\) Hickman's Model I | This model is a variation of \(\cal N2\) |
\(\cal N24(n)\) An extension of \(\cal N24\) to \(n\)-element sets, \(n>1\).\(A=\bigcup B\), where \( B=\{b_i: i\in\omega\}\) is a pairwise disjoint setof \(n\)-element sets | \(\cal G\) is the group of all permutations of \(A\)which are permutations of \(B\); and \(S\) is the set of all finite subsets of\(A\) |
\(\cal N24(n,LO)\) Truss' Model III | This is a variation of \(\cal N24(n)\)in which the set \(B\) is linearly ordered |
\(\cal N26\) Brunner/Pincus Model, a variation of \(\cal N2\) | The set ofatoms \(A=\bigcup_{n\in\omega} P_n\), where the \(P_n\)'s are pairwisedisjoint denumerable sets; \(\cal G\) is the set of all permutations\(\sigma\) on \(A\) such that \(\sigma(P_n)=P_n\), for all \(n\in\omega\); and \(S\)is the set of all finite subsets of \(A\) |
\(\cal N33\) Howard/H\.Rubin/J\.Rubin Model | \(A\) is countably infinite;\(\precsim\) is a dense linear ordering on \(A\) without first or lastelements (\((A,\precsim) \cong (\Bbb Q,\le)\)); \(\cal G\) is the group of allorder automorphisms on \((A,\precsim)\); and \(S\) is the set of all boundedsubsets of \(A\) |
\(\cal N35\) Truss' Model IV | The set of atoms, \(A\), is denumerable andeach element of \(A\) is associated with a finite sequence of zeros andones |
\(\cal N41\) Another variation of \(\cal N3\) | \(A=\bigcup\{B_n; n\in\omega\}\)is a disjoint union, where each \(B_n\) is denumerable and ordered like therationals by \(\le_n\) |
\(\cal N43\) Brunner's Model II | The set of atoms \(A=\bigcup\{P_n: n\in\omega\}\), where \(|P_n|=n+1\) for each \(n\in\omega\) and the \(P_n\)'s arepairwise disjoint |
\(\cal N49\) De la Cruz/Di Prisco Model | Let \(A = \{ a(i,p) : i\in\omega\land p\in {\Bbb Q}/{\Bbb Z} \}\) |
\(\cal N50(E)\) Brunner's Model III | \(E\) is a finite set of prime numbers.For each \(p\in E\) and \(n\in\omega\), let \(A_{p,n}\) be a set of atoms ofcardinality \(p^n\) |
\(\cal N53\) Good/Tree/Watson Model I | Let \(A=\bigcup \{Q_n:\ n\in\omega\}\), where \(Q_n=\{a_{n,q}:q\in \Bbb{Q}\}\) |
\(\cal N56\) Howard's model III: Assume the the atoms are indexed asfollows: \(A = \{a(i,j) : i\in{\Bbb Q} \hbox{ and } j\in\omega \}\) | Foreach \(i\in \Bbb Q\), let \(A_i = \{a(i,j) : j\in \omega\}\) |
Code: 3
Comments: