Hypothesis: HR 128:

Aczel's Realization Principle: On every infinite set there is a Hausdorff topology with an infinite set of non-isolated points.

Conclusion: HR 76:

\(MC_\omega(\infty,\infty)\) (\(\omega\)-MC): For every family \(X\) of pairwise disjoint non-empty sets, there is a function \(f\) such that for each \(x\in X\), f(x) is a non-empty countable subset of \(x\).

List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal M1\) Cohen's original model Add a denumerable number of generic reals (subsets of \(\omega\)), \(a_1\), \(a_2\), \(\cdots\), along with the set \(b\) containing them
\(\cal N3\) Mostowski's Linearly Ordered Model \(A\) is countably infinite;\(\precsim\) is a dense linear ordering on \(A\) without first or lastelements (\((A,\precsim) \cong (\Bbb Q,\le)\)); \(\cal G\) is the group of allorder automorphisms on \((A,\precsim)\); and \(S\) is the set of all finitesubsets of \(A\)
\(\cal N55\) Keremedis/Tachtsis Model: The set of atoms \(A=\bigcup \{A_n: n\in \omega\}\), where \(A_n=\{a_{n,x}: x\in B(0,\frac1n)\}\) and \(B(0,\frac1n)= \{x: \rho(x,0)=\frac1n\}\), where \(\rho\) is the Euclidean metric The group of permutations \(\cal G\), is the group of all rotations of the \(A_n\) through an angle \(\theta\in [0,2\pi)\), and supports are finite
\(\cal N57\) The set of atoms \(A=\cup\{A_{n}:n\in\aleph_{1}\}\), where\(A_{n}=\{a_{nx}:x\in B(0,1)\}\) and \(B(0,1)\) is the set of points on theunit circle centered at 0 The group of permutations \(\cal{G}\) is thegroup of all permutations on \(A\) which rotate the \(A_{n}\)'s by an angle\(\theta_{n}\in\Bbb{R}\) and supports are countable
\(\cal N58\) Keremedis/Tachtsis Model 2: For each \(n\in\omega-\{0\}\), let\(A_n=\{({i\over n}) (\cos t,\sin t): t\in [0.2\pi)\}\) and let the set of atoms\(A=\bigcup \{A_n: n\in\omega-\{0\}\}\) \(\cal G\) is the group of allpermutations on \(A\) which rotate the \(A_n\)'s by an angle \(\theta_n\), andsupports are finite

Code: 3

Comments:


Edit | Back