Fraenkel \(\cal N58\): Keremedis/Tachtsis Model 2: For each \(n\in\omega-\{0\}\), let\(A_n=\{({i\over n}) (\cos t,\sin t): t\in [0.2\pi)\}\) and let the set of atoms\(A=\bigcup \{A_n: n\in\omega-\{0\}\}\) | Historical notes

Description: \(\cal G\) is the group of allpermutations on \(A\) which rotate the \(A_n\)'s by an angle \(\theta_n\), andsupports are finite

Parameter(s): This model does not depend on parameters

All Forms Known to be True in \(\cal N58\):
423, 404, 390, 389, 387, 378, 377, 376, 374-n, 373-n, 358, 342-n, 336-n, 325, 304, 296, 288-n, 249, 217, 216, 199(\(n\)), 198, 185, 167, 132, 128, 127, 124, 98, 84, 83, 82, 80, 73, 64, 57, 18, 17, 13, 12, 11, 10, 9, 0,

All Forms Known to be False in \(\cal N58\):
430-p, 427, 426, 407, 394, 393, 392, 391, 388, 384, 359, 347, 346, 345, 343, 341, 340, 335-n, 334, 333, 332, 331, 328, 317, 303, 302, 286, 264, 262, 261, 260, 259, 258, 257, 256, 255, 239, 231, 218, 214, 202, 193, 192, 188, 181, 174-alpha, 168, 165, 154, 149, 133, 131, 126, 123, 113, 109, 106, 101, 100, 95-F, 87-alpha, 86-alpha, 76, 67, 66, 60, 50, 44, 43, 40, 39, 36, 28-p, 20, 14, 8, 1,

A minimial list of forms whose truth in this model imply all others that are true in this model: 9

Falses that are implied by others list: 131-154-165-341

References for models trues falses list: References Keremedis\slash Tachtsis [2000] andKeremedis\slash Tachtsis [2001]

Back