Fraenkel \(\cal N58\): Keremedis/Tachtsis Model 2: For each \(n\in\omega-\{0\}\), let\(A_n=\{({i\over n}) (\cos t,\sin t): t\in [0.2\pi)\}\) and let the set of atoms\(A=\bigcup \{A_n: n\in\omega-\{0\}\}\) | Historical notes
Description: \(\cal G\) is the group of allpermutations on \(A\) which rotate the \(A_n\)'s by an angle \(\theta_n\), andsupports are finite
Parameter(s): This model does not depend on parameters
All Forms Known to be True in \(\cal N58\):
423,
404,
390,
389,
387,
378,
377,
376,
374-n,
373-n,
358,
342-n,
336-n,
325,
304,
296,
288-n,
249,
217,
216,
199(\(n\)),
198,
185,
167,
132,
128,
127,
124,
98,
84,
83,
82,
80,
73,
64,
57,
18,
17,
13,
12,
11,
10,
9,
0,
All Forms Known to be False in \(\cal N58\):
430-p,
427,
426,
407,
394,
393,
392,
391,
388,
384,
359,
347,
346,
345,
343,
341,
340,
335-n,
334,
333,
332,
331,
328,
317,
303,
302,
286,
264,
262,
261,
260,
259,
258,
257,
256,
255,
239,
231,
218,
214,
202,
193,
192,
188,
181,
174-alpha,
168,
165,
154,
149,
133,
131,
126,
123,
113,
109,
106,
101,
100,
95-F,
87-alpha,
86-alpha,
76,
67,
66,
60,
50,
44,
43,
40,
39,
36,
28-p,
20,
14,
8,
1,
A minimial list of forms whose truth in this model imply all others that are true in this model: 9
Falses that are implied by others list: 131-154-165-341
References for models trues falses list: References Keremedis\slash Tachtsis [2000] andKeremedis\slash Tachtsis [2001]
Back