Fraenkel \(\cal N55\): Keremedis/Tachtsis Model: The set of atoms \(A=\bigcup \{A_n: n\in \omega\}\), where \(A_n=\{a_{n,x}: x\in B(0,\frac1n)\}\) and \(B(0,\frac1n)= \{x: \rho(x,0)=\frac1n\}\), where \(\rho\) is the Euclidean metric | Historical notes

Description: The group of permutations \(\cal G\), is the group of all rotations of the \(A_n\) through an angle \(\theta\in [0,2\pi)\), and supports are finite

Parameter(s): This model does not depend on parameters

All Forms Known to be True in \(\cal N55\):
423, 404, 390, 389, 387, 378, 377, 376, 374-n, 373-n, 371, 369, 368, 367, 366, 364, 363, 362, 361, 358, 342-n, 336-n, 325, 313, 309, 307, 306, 305, 304, 296, 289, 288-n, 280, 273, 272, 252, 251, 249, 223, 222, 217, 216, 212, 211, 206, 203, 199(\(n\)), 198, 197, 194, 191, 190, 189, 185, 182, 170, 169, 167, 145, 142, 139, 137-k, 132, 130, 128, 127, 124, 108, 104, 98, 94, 93, 92, 91, 84, 83, 82, 80, 79, 74, 73, 70, 64, 57, 38, 37, 35, 34, 19, 18, 17, 13, 12, 11, 10, 9, 6, 5, 0,

All Forms Known to be False in \(\cal N55\):
430-p, 427, 426, 421, 407, 394, 393, 392, 391, 388, 384, 359, 347, 346, 345, 343, 335-n, 334, 333, 332, 331, 328, 317, 303, 302, 286, 264, 262, 261, 260, 259, 258, 257, 256, 255, 239, 231, 218, 214, 202, 193, 192, 188, 181, 174-alpha, 168, 165, 154, 149, 133, 131, 126, 123, 116, 113, 109, 106, 101, 100, 95-F, 87-alpha, 86-alpha, 76, 67, 66, 60, 50, 44, 43, 40, 39, 36, 28-p, 20, 15, 14, 8, 1,

A minimial list of forms whose truth in this model imply all others that are true in this model: 9-91-191

Falses that are implied by others list: 15-116-131-154-165-421

References for models trues falses list: References Keremedis/Tachtsis [1999a], \cite {2000}and Note 18.

Back