Hypothesis: HR 17:
Ramsey's Theorem I: If \(A\) is an infinite set and the family of all 2 element subsets of \(A\) is partitioned into 2 sets \(X\) and \(Y\), then there is an infinite subset \(B\subseteq A\) such that all 2 element subsets of \(B\) belong to \(X\) or all 2 element subsets of \(B\) belong to \(Y\). (Also, see Form 325.), Jech [1973b], p 164 prob 11.20.
Conclusion: HR 106:
Baire Category Theorem for Compact Hausdorff Spaces: Every compact Hausdorff space is Baire.
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal M6\) Sageev's Model I | Using iterated forcing, Sageev constructs \(\cal M6\) by adding a denumerable number of generic tree-like structuresto the ground model, a model of \(ZF + V = L\) |
\(\cal M29\) Pincus' Model II | Pincus constructs a generic extension \(M[I]\) of a model \(M\) of \(ZF +\) class choice \(+ GCH\) in which \(I=\bigcup_{n\in\omega}I_n\), \(I_{-1}=2\) and \(I_{n+1}\) is a denumerable set of independent functions from \(\omega\) onto \(I_n\) |
\(\cal N1\) The Basic Fraenkel Model | The set of atoms, \(A\) is denumerable; \(\cal G\) is the group of all permutations on \(A\); and \(S\) isthe set of all finite subsets of \(A\) |
\(\cal N3\) Mostowski's Linearly Ordered Model | \(A\) is countably infinite;\(\precsim\) is a dense linear ordering on \(A\) without first or lastelements (\((A,\precsim) \cong (\Bbb Q,\le)\)); \(\cal G\) is the group of allorder automorphisms on \((A,\precsim)\); and \(S\) is the set of all finitesubsets of \(A\) |
\(\cal N10\) Höft/Howard/Mostowski Model | (The model is a variation of\(\cal N3\).) \(A\) as ordered by \(\precsim\) has the same order type as therationals; \(\cal G\) is the group of all order automorphisms of \(A\); \(S\) isthe set of all subsets \(E\) of \(A\) that satisfy the following threeconditions:\item{1.} \(E\) is well ordered by \(\precsim\).\item{2.} \(E\) is bounded in \(A\).\item{3.} If \(b:\alpha\to E\) is an order preserving bijection from\(\alpha\) onto \(E\) and if \(\lambda < \alpha\) is a limit ordinal then\(\{b(\beta) : \beta < \gamma\}\) has no least upper bound in\((A,\precsim)\).\par\noindentIn <a href="/articles/H\"oft/Howard-1994">H\"oft/Howard [1994]</a> it is shown that, in \(\cal N10\), everyDedekind finite set is finite (9 is true), but \((A,\precsim)\) is alinearly ordered set with no infinite descending sequences that cannot bewell ordered (77 is false) |
\(\cal N16\) Jech/Levy/Pincus Model | \(A\) has cardinality \(\aleph_{\omega}\);\(\cal G\) is the group of all permutations on \(A\); and \(S\) is the set ofall subsets of \(A\) of cardinality less that \(\aleph_{\omega}\) |
\(\cal N16(\aleph_{\gamma})\) Levy's Model II | This is an extension of\(\cal N16\) in which \(A\) has cardinality \(\aleph_{\gamma}\) wherecf\((\aleph_{\gamma}) = \aleph_0\); \(\cal G\) is the group of allpermutations on \(A\); and \(S\) is the set of all subsets of \(A\) ofcardinality less that \(\aleph_{\gamma}\) |
\(\cal N21(\aleph_{\alpha+1})\) Jensen's Model | We assume \(\aleph_{\alpha+1}\) is a regular cardinal |
\(\cal N38\) Howard/Rubin Model I | Let \((A,\le)\) be an ordered set of atomswhich is order isomorphic to \({\Bbb Q}^\omega\), the set of all functionsfrom \(\omega\) into \(\Bbb Q\) ordered by the lexicographic ordering |
\(\cal N41\) Another variation of \(\cal N3\) | \(A=\bigcup\{B_n; n\in\omega\}\)is a disjoint union, where each \(B_n\) is denumerable and ordered like therationals by \(\le_n\) |
\(\cal N49\) De la Cruz/Di Prisco Model | Let \(A = \{ a(i,p) : i\in\omega\land p\in {\Bbb Q}/{\Bbb Z} \}\) |
\(\cal N55\) Keremedis/Tachtsis Model: The set of atoms \(A=\bigcup \{A_n: n\in \omega\}\), where \(A_n=\{a_{n,x}: x\in B(0,\frac1n)\}\) and \(B(0,\frac1n)= \{x: \rho(x,0)=\frac1n\}\), where \(\rho\) is the Euclidean metric | The group of permutations \(\cal G\), is the group of all rotations of the \(A_n\) through an angle \(\theta\in [0,2\pi)\), and supports are finite |
\(\cal N58\) Keremedis/Tachtsis Model 2: For each \(n\in\omega-\{0\}\), let\(A_n=\{({i\over n}) (\cos t,\sin t): t\in [0.2\pi)\}\) and let the set of atoms\(A=\bigcup \{A_n: n\in\omega-\{0\}\}\) | \(\cal G\) is the group of allpermutations on \(A\) which rotate the \(A_n\)'s by an angle \(\theta_n\), andsupports are finite |
Code: 3
Comments: