This non-implication, Form 191 \( \not \Rightarrow \) Form 408, whose code is 4, is constructed around a proven non-implication as follows:

  • This non-implication was constructed without the use of this first code 2/1 implication.
  • A proven non-implication whose code is 3. In this case, it's Code 3: 1412, Form 191 \( \not \Rightarrow \) Form 358 whose summary information is:
    Hypothesis Statement
    Form 191 <p> \(SVC\): There is a set \(S\) such that for every set \(a\), there is an ordinal \(\alpha\) and a function from \(S\times\alpha\) onto \(a\). </p>

    Conclusion Statement
    Form 358 <p> \(KW(\aleph_0,<\aleph_0)\), <strong>The Kinna-Wagner Selection Principle</strong> for a denumerable family of finite sets: For every denumerable set \(M\) of finite sets there is a function \(f\) such that for all \(A\in M\), if \(|A| > 1\) then \(\emptyset\neq f(A)\subsetneq A\). </p>

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 4441, whose string of implications is:
    408 \(\Rightarrow\) 62 \(\Rightarrow\) 10 \(\Rightarrow\) 358

The conclusion Form 191 \( \not \Rightarrow \) Form 408 then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal M7\) Cohen's Second Model There are two denumerable subsets\(U=\{U_i:i\in\omega\}\) and \(V=\{V_i:i\in\omega\}\) of \(\cal P({\Bbb R})\)(neither of which is in the model) such that for each \(i\in\omega\), \(U_i\)and \(V_i\) cannot be distinguished in the model
\(\cal N2\) The Second Fraenkel Model The set of atoms \(A=\{a_i : i\in\omega\}\) is partitioned into two element sets \(B =\{\{a_{2i},a_{2i+1}\} : i\in\omega\}\). \(\mathcal G \) is the group of all permutations of \( A \) that leave \( B \) pointwise fixed and \( S \) is the set of all finite subsets of \( A \).
\(\cal N2(n)\) A generalization of \(\cal N2\) This is a generalization of\(\cal N2\) in which there is a denumerable set of \(n\) element sets for\(n\in\omega - \{0,1\}\)
\(\cal N2^*(3)\) Howard's variation of \(\cal N2(3)\) \(A=\bigcup B\), where\(B\) is a set of pairwise disjoint 3 element sets, \(T_i = \{a_i, b_i,c_i\}\)
\(\cal N6\) Levy's Model I \(A=\{a_n : n\in\omega\}\) and \(A = \bigcup \{P_n: n\in\omega\}\), where \(P_0 = \{a_0\}\), \(P_1 = \{a_1,a_2\}\), \(P_2 =\{a_3,a_4,a_5\}\), \(P_3 = \{a_6,a_7,a_8,a_9,a_{10}\}\), \(\cdots\); in generalfor \(n>0\), \(|P_n| = p_n\), where \(p_n\) is the \(n\)th prime
\(\cal N22(p)\) Makowski/Wi\'sniewski/Mostowski Model (Where \(p\) is aprime) Let \(A=\bigcup\{A_i: i\in\omega\}\) where The \(A_i\)'s are pairwisedisjoint and each has cardinality \(p\)
\(\cal N43\) Brunner's Model II The set of atoms \(A=\bigcup\{P_n: n\in\omega\}\), where \(|P_n|=n+1\) for each \(n\in\omega\) and the \(P_n\)'s arepairwise disjoint

Edit | Back