This non-implication,
Form 216 \( \not \Rightarrow \)
Form 126,
whose code is 4, is constructed around a proven non-implication as follows:
Hypothesis | Statement |
---|---|
Form 217 | <p> Every infinite partially ordered set has either an infinite chain or an infinite antichain. </p> |
Conclusion | Statement |
---|---|
Form 126 | <p> \(MC(\aleph_0,\infty)\), <strong>Countable axiom of multiple choice:</strong> For every denumerable set \(X\) of non-empty sets there is a function \(f\) such that for all \(y\in X\), \(f(y)\) is a non-empty finite subset of \(y\). </p> |
The conclusion Form 216 \( \not \Rightarrow \) Form 126 then follows.
Finally, the
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal M6\) Sageev's Model I | Using iterated forcing, Sageev constructs \(\cal M6\) by adding a denumerable number of generic tree-like structuresto the ground model, a model of \(ZF + V = L\) |
\(\cal M29\) Pincus' Model II | Pincus constructs a generic extension \(M[I]\) of a model \(M\) of \(ZF +\) class choice \(+ GCH\) in which \(I=\bigcup_{n\in\omega}I_n\), \(I_{-1}=2\) and \(I_{n+1}\) is a denumerable set of independent functions from \(\omega\) onto \(I_n\) |
\(\cal N1\) The Basic Fraenkel Model | The set of atoms, \(A\) is denumerable; \(\cal G\) is the group of all permutations on \(A\); and \(S\) isthe set of all finite subsets of \(A\) |
\(\cal N41\) Another variation of \(\cal N3\) | \(A=\bigcup\{B_n; n\in\omega\}\)is a disjoint union, where each \(B_n\) is denumerable and ordered like therationals by \(\le_n\) |
\(\cal N55\) Keremedis/Tachtsis Model: The set of atoms \(A=\bigcup \{A_n: n\in \omega\}\), where \(A_n=\{a_{n,x}: x\in B(0,\frac1n)\}\) and \(B(0,\frac1n)= \{x: \rho(x,0)=\frac1n\}\), where \(\rho\) is the Euclidean metric | The group of permutations \(\cal G\), is the group of all rotations of the \(A_n\) through an angle \(\theta\in [0,2\pi)\), and supports are finite |
\(\cal N58\) Keremedis/Tachtsis Model 2: For each \(n\in\omega-\{0\}\), let\(A_n=\{({i\over n}) (\cos t,\sin t): t\in [0.2\pi)\}\) and let the set of atoms\(A=\bigcup \{A_n: n\in\omega-\{0\}\}\) | \(\cal G\) is the group of allpermutations on \(A\) which rotate the \(A_n\)'s by an angle \(\theta_n\), andsupports are finite |