This non-implication, Form 217 \( \not \Rightarrow \) Form 388, whose code is 4, is constructed around a proven non-implication as follows:

  • This non-implication was constructed without the use of this first code 2/1 implication.
  • A proven non-implication whose code is 3. In this case, it's Code 3: 1007, Form 217 \( \not \Rightarrow \) Form 126 whose summary information is:
    Hypothesis Statement
    Form 217 <p> Every infinite partially ordered set has either an infinite chain or an infinite antichain. </p>

    Conclusion Statement
    Form 126 <p> \(MC(\aleph_0,\infty)\), <strong>Countable axiom of multiple choice:</strong> For every denumerable set \(X\) of non-empty sets there is a function \(f\) such that for all \(y\in X\), \(f(y)\) is a non-empty finite subset of \(y\). </p>

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 7261, whose string of implications is:
    388 \(\Rightarrow\) 106 \(\Rightarrow\) 126

The conclusion Form 217 \( \not \Rightarrow \) Form 388 then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal M6\) Sageev's Model I Using iterated forcing, Sageev constructs \(\cal M6\) by adding a denumerable number of generic tree-like structuresto the ground model, a model of \(ZF + V = L\)
\(\cal M29\) Pincus' Model II Pincus constructs a generic extension \(M[I]\) of a model \(M\) of \(ZF +\) class choice \(+ GCH\) in which \(I=\bigcup_{n\in\omega}I_n\), \(I_{-1}=2\) and \(I_{n+1}\) is a denumerable set of independent functions from \(\omega\) onto \(I_n\)
\(\cal N1\) The Basic Fraenkel Model The set of atoms, \(A\) is denumerable; \(\cal G\) is the group of all permutations on \(A\); and \(S\) isthe set of all finite subsets of \(A\)
\(\cal N41\) Another variation of \(\cal N3\) \(A=\bigcup\{B_n; n\in\omega\}\)is a disjoint union, where each \(B_n\) is denumerable and ordered like therationals by \(\le_n\)
\(\cal N55\) Keremedis/Tachtsis Model: The set of atoms \(A=\bigcup \{A_n: n\in \omega\}\), where \(A_n=\{a_{n,x}: x\in B(0,\frac1n)\}\) and \(B(0,\frac1n)= \{x: \rho(x,0)=\frac1n\}\), where \(\rho\) is the Euclidean metric The group of permutations \(\cal G\), is the group of all rotations of the \(A_n\) through an angle \(\theta\in [0,2\pi)\), and supports are finite
\(\cal N58\) Keremedis/Tachtsis Model 2: For each \(n\in\omega-\{0\}\), let\(A_n=\{({i\over n}) (\cos t,\sin t): t\in [0.2\pi)\}\) and let the set of atoms\(A=\bigcup \{A_n: n\in\omega-\{0\}\}\) \(\cal G\) is the group of allpermutations on \(A\) which rotate the \(A_n\)'s by an angle \(\theta_n\), andsupports are finite

Edit | Back