This non-implication,
Form 222 \( \not \Rightarrow \)
Form 214,
whose code is 4, is constructed around a proven non-implication as follows:
Hypothesis | Statement |
---|---|
Form 63 | <p> \(SPI\): Weak ultrafilter principle: Every infinite set has a non-trivial ultrafilter. <br /> <a href="/books/8">Jech [1973b]</a>, p 172 prob 8.5. </p> |
Conclusion | Statement |
---|---|
Form 152 | <p> \(D_{\aleph_{0}}\): Every non-well-orderable set is the union of a pairwise disjoint, well orderable family of denumerable sets. (See <a href=""notes/note-27">note 27</a> for \(D_{\kappa}\), \(\kappa\) a well ordered cardinal.) </p> |
The conclusion Form 222 \( \not \Rightarrow \) Form 214 then follows.
Finally, the
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal M1\) Cohen's original model | Add a denumerable number of generic reals (subsets of \(\omega\)), \(a_1\), \(a_2\), \(\cdots\), along with the set \(b\) containing them |
\(\cal M40(\kappa)\) Pincus' Model IV | The ground model \(\cal M\), is a model of \(ZF +\) the class form of \(AC\) |
\(\cal N1\) The Basic Fraenkel Model | The set of atoms, \(A\) is denumerable; \(\cal G\) is the group of all permutations on \(A\); and \(S\) isthe set of all finite subsets of \(A\) |
\(\cal N3\) Mostowski's Linearly Ordered Model | \(A\) is countably infinite;\(\precsim\) is a dense linear ordering on \(A\) without first or lastelements (\((A,\precsim) \cong (\Bbb Q,\le)\)); \(\cal G\) is the group of allorder automorphisms on \((A,\precsim)\); and \(S\) is the set of all finitesubsets of \(A\) |
\(\cal N7\) L\"auchli's Model I | \(A\) is countably infinite |
\(\cal N12(\aleph_1)\) A variation of Fraenkel's model, \(\cal N1\) | Thecardinality of \(A\) is \(\aleph_1\), \(\cal G\) is the group of allpermutations on \(A\), and \(S\) is the set of all countable subsets of \(A\).In \(\cal N12(\aleph_1)\), every Dedekind finite set is finite (9 is true),but the \(2m=m\) principle (3) is false |
\(\cal N12(\aleph_2)\) Another variation of \(\cal N1\) | Change "\(\aleph_1\)" to "\(\aleph_2\)" in \(\cal N12(\aleph_1)\) above |
\(\cal N19(\precsim)\) Tsukada's Model | Let \((P,\precsim)\) be a partiallyordered set that is not well ordered; Let \(Q\) be a countably infinite set,disjoint from \(P\); and let \(I=P\cup Q\) |
\(\cal N24\) Hickman's Model I | This model is a variation of \(\cal N2\) |
\(\cal N24(n)\) An extension of \(\cal N24\) to \(n\)-element sets, \(n>1\).\(A=\bigcup B\), where \( B=\{b_i: i\in\omega\}\) is a pairwise disjoint setof \(n\)-element sets | \(\cal G\) is the group of all permutations of \(A\)which are permutations of \(B\); and \(S\) is the set of all finite subsets of\(A\) |
\(\cal N26\) Brunner/Pincus Model, a variation of \(\cal N2\) | The set ofatoms \(A=\bigcup_{n\in\omega} P_n\), where the \(P_n\)'s are pairwisedisjoint denumerable sets; \(\cal G\) is the set of all permutations\(\sigma\) on \(A\) such that \(\sigma(P_n)=P_n\), for all \(n\in\omega\); and \(S\)is the set of all finite subsets of \(A\) |
\(\cal N29\) Dawson/Howard Model | Let \(A=\bigcup\{B_n; n\in\omega\}\) is a disjoint union, where each \(B_n\) is denumerable and ordered like the rationals by \(\le_n\) |
\(\cal N33\) Howard/H\.Rubin/J\.Rubin Model | \(A\) is countably infinite;\(\precsim\) is a dense linear ordering on \(A\) without first or lastelements (\((A,\precsim) \cong (\Bbb Q,\le)\)); \(\cal G\) is the group of allorder automorphisms on \((A,\precsim)\); and \(S\) is the set of all boundedsubsets of \(A\) |
\(\cal N36(\beta)\) Brunner/Howard Model III | This model is a modificationof \(\cal N15\) |
\(\cal N38\) Howard/Rubin Model I | Let \((A,\le)\) be an ordered set of atomswhich is order isomorphic to \({\Bbb Q}^\omega\), the set of all functionsfrom \(\omega\) into \(\Bbb Q\) ordered by the lexicographic ordering |
\(\cal N40\) Howard/Rubin Model II | A variation of \(\cal N38\) |
\(\cal N48\) Pincus' Model XI | \(\cal A=(A,<,C_0,C_1,\dots)\) is called an<em>ordered colored set</em> (OC set) if \(<\) is a linear ordering on \(A\)and the \(C_i\), for \(i\in\omega\) are subsets of \(A\) such that for each\(a\in A\) there is exactly one \(n\in\omega\) such that \(a\in C_n\) |
\(\cal N49\) De la Cruz/Di Prisco Model | Let \(A = \{ a(i,p) : i\in\omega\land p\in {\Bbb Q}/{\Bbb Z} \}\) |