This non-implication, 
	Form 0 \( \not \Rightarrow \)
	Form 422-n, 
	 whose code is 4,  is constructed around a proven non-implication as follows:
	
| Hypothesis | Statement | 
|---|---|
| Form 0 | \(0 = 0\). | 
| Conclusion | Statement | 
|---|---|
| Form 47-n | <p> If \(n\in\omega-\{0,1\}\), \(C(WO,n)\): Every well ordered collection of \(n\)-element sets has a choice function. </p> | 
The conclusion Form 0 \( \not \Rightarrow \) Form 422-n then follows.
	Finally, the 
	  List of models where hypothesis is true and the conclusion is false:
	  	
| Name | Statement | 
|---|---|
| \(\cal M7(n)\) Generalization of \(\cal M7\) | Model <a href="/models/Cohen-2">\(\cal M7\)</a> can be generalized to \(n\) denumerable sets for \(1 \le n \in\omega\), then the Axiom of Choice for a denumerable number of \(n\) element sets, \(C(\aleph_0,n)\), is false for \(1 \le n \le \omega\) | 
| \(\cal M47(n,M)\) Pincus' Model IX | This is the model of <a href="/articles/Pincus-1977a">Pincus [1977a]</a>, Theorem 2.1 \((E)\) | 
| \(\cal N2(n)\) A generalization of \(\cal N2\) | This is a generalization of\(\cal N2\) in which there is a denumerable set of \(n\) element sets for\(n\in\omega - \{0,1\}\) | 
| \(\cal N2^*(3)\) Howard's variation of \(\cal N2(3)\) | \(A=\bigcup B\), where\(B\) is a set of pairwise disjoint 3 element sets, \(T_i = \{a_i, b_i,c_i\}\) | 
| \(\cal N2(n,M)\) Mostowski's variation of \(\cal N2(n)\) | \(A\), \(B\), and \(S\)are the same as in \(\cal N2(n)\) | 
| \(\cal N22(p)\) Makowski/Wi\'sniewski/Mostowski Model | (Where \(p\) is aprime) Let \(A=\bigcup\{A_i: i\in\omega\}\) where The \(A_i\)'s are pairwisedisjoint and each has cardinality \(p\) | 
| \(\cal N49\) De la Cruz/Di Prisco Model | Let \(A = \{ a(i,p) : i\in\omega\land p\in {\Bbb Q}/{\Bbb Z} \}\) |