This non-implication, Form 102 \( \not \Rightarrow \) Form 292, whose code is 4, is constructed around a proven non-implication as follows:

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 4204, whose string of implications is:
    60 \(\Rightarrow\) 62 \(\Rightarrow\) 102
  • A proven non-implication whose code is 3. In this case, it's Code 3: 978, Form 60 \( \not \Rightarrow \) Form 118 whose summary information is:
    Hypothesis Statement
    Form 60 <p> \(C(\infty,WO)\): Every set of non-empty, well orderable sets has a choice function.<br /> <a href="/books/2">Moore, G. [1982]</a>, p 125. </p>

    Conclusion Statement
    Form 118 <p> Every linearly orderable topological space is normal.  <a href="/books/28">Birkhoff [1967]</a>, p 241. </p>

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 6542, whose string of implications is:
    292 \(\Rightarrow\) 90 \(\Rightarrow\) 118

The conclusion Form 102 \( \not \Rightarrow \) Form 292 then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N3\) Mostowski's Linearly Ordered Model \(A\) is countably infinite;\(\precsim\) is a dense linear ordering on \(A\) without first or lastelements (\((A,\precsim) \cong (\Bbb Q,\le)\)); \(\cal G\) is the group of allorder automorphisms on \((A,\precsim)\); and \(S\) is the set of all finitesubsets of \(A\)
\(\cal N5\) The Mathias/Pincus Model II (an extension of \(\cal N4\)) \(A\) iscountably infinite; \(\precsim\) and \(\le\) are universal homogeneous partialand linear orderings, respectively, on \(A\), (See <a href="/articles/Jech-1973b">Jech [1973b]</a>p101 for definitions.); \(\cal G\) is the group of all order automorphismson \((A,\precsim,\le)\); and \(S\) is the set of all finite subsets of \(A\)
\(\cal N19(\precsim)\) Tsukada's Model Let \((P,\precsim)\) be a partiallyordered set that is not well ordered; Let \(Q\) be a countably infinite set,disjoint from \(P\); and let \(I=P\cup Q\)
\(\cal N29\) Dawson/Howard Model Let \(A=\bigcup\{B_n; n\in\omega\}\) is a disjoint union, where each \(B_n\) is denumerable and ordered like the rationals by \(\le_n\)
\(\cal N38\) Howard/Rubin Model I Let \((A,\le)\) be an ordered set of atomswhich is order isomorphic to \({\Bbb Q}^\omega\), the set of all functionsfrom \(\omega\) into \(\Bbb Q\) ordered by the lexicographic ordering
\(\cal N40\) Howard/Rubin Model II A variation of \(\cal N38\)
\(\cal N48\) Pincus' Model XI \(\cal A=(A,<,C_0,C_1,\dots)\) is called an<em>ordered colored set</em> (OC set) if \(<\) is a linear ordering on \(A\)and the \(C_i\), for \(i\in\omega\) are subsets of \(A\) such that for each\(a\in A\) there is exactly one \(n\in\omega\) such that \(a\in C_n\)

Edit | Back