Fraenkel \(\cal N51\): Weglorz/Brunner Model | Back to this models page
Description: Let \(A\) be denumerable and \(\cal G\)be the group of all permutations of \(A\)
When the book was first being written, only the following form classes were known to be true in this model:
Form Howard-Rubin Number | Statement |
---|---|
6 | \(UT(\aleph_0,\aleph_0,\aleph_0,\Bbb R)\): The union of a denumerable family of denumerable subsets of \({\Bbb R}\) is denumerable. |
37 | Lebesgue measure is countably additive. |
64 | \(E(I,Ia)\) There are no amorphous sets. (Equivalently, every infinite set is the union of two disjoint infinite sets.) |
90 | \(LW\): Every linearly ordered set can be well ordered. Jech [1973b], p 133. |
130 | \({\cal P}(\Bbb R)\) is well orderable. |
191 | \(SVC\): There is a set \(S\) such that for every set \(a\), there is an ordinal \(\alpha\) and a function from \(S\times\alpha\) onto \(a\). |
273 | There is a subset of \({\Bbb R}\) which is not Borel. |
305 | There are \(2^{\aleph_0}\) Vitali equivalence classes. (Vitali equivalence classes are equivalence classes of the real numbers under the relation \(x\equiv y\leftrightarrow(\exists q\in{\Bbb Q})(x-y=q)\).). \ac{Kanovei} \cite{1991}. |
309 | The Banach-Tarski Paradox: There are three finite partitions \(\{P_1,\ldots\), \(P_n\}\), \(\{Q_1,\ldots,Q_r\}\) and \(\{S_1,\ldots,S_n, T_1,\ldots,T_r\}\) of \(B^3 = \{x\in {\Bbb R}^3 : |x| \le 1\}\) such that \(P_i\) is congruent to \(S_i\) for \(1\le i\le n\) and \(Q_i\) is congruent to \(T_i\) for \(1\le i\le r\). |
313 | \(\Bbb Z\) (the set of integers under addition) is amenable. (\(G\) is {\it amenable} if there is a finitely additive measure \(\mu\) on \(\cal P(G)\) such that \(\mu(G) = 1\) and \(\forall A\subseteq G, \forall g\in G\), \(\mu(gA)=\mu(A)\).) |
361 | In \(\Bbb R\), the union of a denumerable number of analytic sets is analytic. G. Moore [1982], pp 181 and 325. |
363 | There are exactly \(2^{\aleph_0}\) Borel sets in \(\Bbb R\). G. Moore [1982], p 325. |
When the book was first being written, only the following form classes were known to be false in this model:
Form Howard-Rubin Number | Statement |
---|---|
9 | Finite \(\Leftrightarrow\) Dedekind finite: \(W_{\aleph_{0}}\) Jech [1973b]: \(E(I,IV)\) Howard/Yorke [1989]): Every Dedekind finite set is finite. |
30 | Ordering Principle: Every set can be linearly ordered. |
49 | Order Extension Principle: Every partial ordering can be extended to a linear ordering. Tarski [1924], p 78. |
192 | \(EP\) sets: For every set \(A\) there is a projective set \(X\) and a function from \(X\) onto \(A\). |
221 | For all infinite \(X\), there is a non-principal measure on \(\cal P(X)\). |
344 | If \((E_i)_{i\in I}\) is a family of non-empty sets, then there is a family \((U_i)_{i\in I}\) such that \(\forall i\in I\), \(U_i\) is an ultrafilter on \(E_i\). |
Historical background: Let \(\cal F\) be the normal filtergenerated by the groups \(\cal G_B\), where \(B\subseteq A\) and \(\cal G_B =\{\sigma\in\cal G: \sigma(B) = B\}\). In this model there is nonon-principal measure on \(A\), soForm 221 is false, but forms 64 (Thereare no amorphous sets.) and 90 (Every linearly ordered set can be wellordered.) are true. (See Note 128.)
Back