We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
44 \(\Rightarrow\) 39 | The Axiom of Choice, Jech, 1973b, page 120 theorem 8.1 |
39 \(\Rightarrow\) 8 | clear |
8 \(\Rightarrow\) 16 | clear |
16 \(\Rightarrow\) 6 |
L’axiome de M. Zermelo et son rˆole dans la th´eorie des ensembles et l’analyse, Sierpi'nski, W. 1918, Bull. Int. Acad. Sci. Cracovie Cl. Math. Nat. |
6 \(\Rightarrow\) 5 |
L’axiome de M. Zermelo et son rˆole dans la th´eorie des ensembles et l’analyse, Sierpi'nski, W. 1918, Bull. Int. Acad. Sci. Cracovie Cl. Math. Nat. |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
44: | \(DC(\aleph _{1})\): Given a relation \(R\) such that for every subset \(Y\) of a set \(X\) with \(|Y| < \aleph_{1}\) there is an \(x \in X\) with \(Y \mathrel R x\), then there is a function \(f: \aleph_{1} \rightarrow X\) such that \((\forall\beta < \aleph_{1}) (\{f(\gamma ): \gamma < b \} \mathrel R f(\beta))\). |
39: | \(C(\aleph_{1},\infty)\): Every set \(A\) of non-empty sets such that \(\vert A\vert = \aleph_{1}\) has a choice function. Moore, G. [1982], p. 202. |
8: | \(C(\aleph_{0},\infty)\): |
16: | \(C(\aleph_{0},\le 2^{\aleph_{0}})\): Every denumerable collection of non-empty sets each with power \(\le 2^{\aleph_{0}}\) has a choice function. |
6: | \(UT(\aleph_0,\aleph_0,\aleph_0,\Bbb R)\): The union of a denumerable family of denumerable subsets of \({\Bbb R}\) is denumerable. |
5: | \(C(\aleph_0,\aleph_0,\Bbb R)\): Every denumerable set of non-empty denumerable subsets of \({\Bbb R}\) has a choice function. |
Comment: