We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
202 \(\Rightarrow\) 40 | clear |
40 \(\Rightarrow\) 39 | clear |
39 \(\Rightarrow\) 8 | clear |
8 \(\Rightarrow\) 16 | clear |
16 \(\Rightarrow\) 6 |
L’axiome de M. Zermelo et son rˆole dans la th´eorie des ensembles et l’analyse, Sierpi'nski, W. 1918, Bull. Int. Acad. Sci. Cracovie Cl. Math. Nat. |
6 \(\Rightarrow\) 5 |
L’axiome de M. Zermelo et son rˆole dans la th´eorie des ensembles et l’analyse, Sierpi'nski, W. 1918, Bull. Int. Acad. Sci. Cracovie Cl. Math. Nat. |
5 \(\Rightarrow\) 38 |
Non-constructive properties of the real numbers, Howard, P. 2001, Math. Logic Quart. |
38 \(\Rightarrow\) 108 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
202: | \(C(LO,\infty)\): Every linearly ordered family of non-empty sets has a choice function. |
40: | \(C(WO,\infty)\): Every well orderable set of non-empty sets has a choice function. Moore, G. [1982], p 325. |
39: | \(C(\aleph_{1},\infty)\): Every set \(A\) of non-empty sets such that \(\vert A\vert = \aleph_{1}\) has a choice function. Moore, G. [1982], p. 202. |
8: | \(C(\aleph_{0},\infty)\): |
16: | \(C(\aleph_{0},\le 2^{\aleph_{0}})\): Every denumerable collection of non-empty sets each with power \(\le 2^{\aleph_{0}}\) has a choice function. |
6: | \(UT(\aleph_0,\aleph_0,\aleph_0,\Bbb R)\): The union of a denumerable family of denumerable subsets of \({\Bbb R}\) is denumerable. |
5: | \(C(\aleph_0,\aleph_0,\Bbb R)\): Every denumerable set of non-empty denumerable subsets of \({\Bbb R}\) has a choice function. |
38: | \({\Bbb R}\) is not the union of a countable family of countable sets. |
108: | There is an ordinal \(\alpha\) such that \(2^{\aleph _{\alpha}}\) is not the union of a denumerable set of denumerable sets. |
Comment: