We have the following indirect implication of form equivalence classes:
| Implication | Reference |
|---|---|
| 20 \(\Rightarrow\) 101 |
Partition principles and infinite sums of cardinal numbers, Higasikawa, M. 1995, Notre Dame J. Formal Logic |
| 101 \(\Rightarrow\) 40 |
On some weak forms of the axiom of choice in set theory, Pelc, A. 1978, Bull. Acad. Polon. Sci. S'er. Sci. Math. Astronom. Phys. |
| 40 \(\Rightarrow\) 39 | clear |
| 39 \(\Rightarrow\) 8 | clear |
| 8 \(\Rightarrow\) 16 | clear |
| 16 \(\Rightarrow\) 194 | clear |
Here are the links and statements of the form equivalence classes referenced above:
| Howard-Rubin Number | Statement |
|---|---|
| 20: | If \(\{A_{x}: x \in S \}\) and \(\{B_{x}: x \in S\}\) are families of pairwise disjoint sets and \( |A_{x}| = |B_{x}|\) for all \(x\in S\), then \(|\bigcup_{x\in S}A_{x}| = |\bigcup_{x\in S} B_{x}|\). Moore [1982] (1.4.12 and 1.7.8). |
| 101: | Partition Principle: If \(S\) is a partition of \(M\), then \(S \precsim M\). |
| 40: | \(C(WO,\infty)\): Every well orderable set of non-empty sets has a choice function. Moore, G. [1982], p 325. |
| 39: | \(C(\aleph_{1},\infty)\): Every set \(A\) of non-empty sets such that \(\vert A\vert = \aleph_{1}\) has a choice function. Moore, G. [1982], p. 202. |
| 8: | \(C(\aleph_{0},\infty)\): |
| 16: | \(C(\aleph_{0},\le 2^{\aleph_{0}})\): Every denumerable collection of non-empty sets each with power \(\le 2^{\aleph_{0}}\) has a choice function. |
| 194: | \(C(\varPi^1_2)\) or \(AC(\varPi^1_2)\): If \(P\in \omega\times{}^{\omega}\omega\), \(P\) has domain \(\omega\), and \(P\) is in \(\varPi^1_2\), then there is a sequence of elements \(\langle x_{k}: k\in\omega\rangle\) of \({}^{\omega}\omega\) with \(\langle k,x_{k}\rangle \in P\) for all \(k\in\omega\). Kanovei [1979]. |
Comment: