We have the following indirect implication of form equivalence classes:
			
| Implication | Reference | 
|---|---|
| 359 \(\Rightarrow\) 20 | clear | 
| 20 \(\Rightarrow\) 101 | Partition principles and infinite sums of cardinal numbers, Higasikawa,  M. 1995, Notre Dame J. Formal Logic | 
| 101 \(\Rightarrow\) 40 | On some weak forms of the axiom of choice in set theory, Pelc,  A. 1978, Bull. Acad. Polon. Sci. S'er. Sci. Math. Astronom. Phys. | 
| 40 \(\Rightarrow\) 39 | clear | 
| 39 \(\Rightarrow\) 8 | clear | 
| 8 \(\Rightarrow\) 94 | clear | 
| 94 \(\Rightarrow\) 74 | note-10 | 
Here are the links and statements of the form equivalence classes referenced above:
| Howard-Rubin Number | Statement | 
|---|---|
| 359: | If \(\{A_{x}: x\in S\}\) and \(\{B_{x}: x\in S\}\) are families of pairwise disjoint sets and \( |A_{x}| \le |B_{x}|\) for all \(x\in S\), then \(|\bigcup_{x\in S}A_{x}| \le |\bigcup_{x\in S} B_{x}|\). | 
| 20: | If \(\{A_{x}: x \in S \}\) and \(\{B_{x}: x \in S\}\) are families of pairwise disjoint sets and \( |A_{x}| = |B_{x}|\) for all \(x\in S\), then \(|\bigcup_{x\in S}A_{x}| = |\bigcup_{x\in S} B_{x}|\). Moore [1982] (1.4.12 and 1.7.8). | 
| 101: | Partition Principle: If \(S\) is a partition of \(M\), then \(S \precsim M\). | 
| 40: | \(C(WO,\infty)\): Every well orderable set of non-empty sets has a choice function. Moore, G. [1982], p 325. | 
| 39: | \(C(\aleph_{1},\infty)\): Every set \(A\) of non-empty sets such that \(\vert A\vert = \aleph_{1}\) has a choice function. Moore, G. [1982], p. 202. | 
| 8: | \(C(\aleph_{0},\infty)\): | 
| 94: | \(C(\aleph_{0},\infty,{\Bbb R})\): Every denumerable family of non-empty sets of reals has a choice function. Jech [1973b], p 148 prob 10.1. | 
| 74: | For every \(A\subseteq\Bbb R\) the following are equivalent: 
 | 
Comment: