We have the following indirect implication of form equivalence classes:

407 \(\Rightarrow\) 108
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
407 \(\Rightarrow\) 43 clear
43 \(\Rightarrow\) 8 clear
8 \(\Rightarrow\) 16 clear
16 \(\Rightarrow\) 6 L’axiome de M. Zermelo et son rˆole dans la th´eorie des ensembles et l’analyse, Sierpi'nski, W. 1918, Bull. Int. Acad. Sci. Cracovie Cl. Math. Nat.
6 \(\Rightarrow\) 5 L’axiome de M. Zermelo et son rˆole dans la th´eorie des ensembles et l’analyse, Sierpi'nski, W. 1918, Bull. Int. Acad. Sci. Cracovie Cl. Math. Nat.
5 \(\Rightarrow\) 38 Non-constructive properties of the real numbers, Howard, P. 2001, Math. Logic Quart.
38 \(\Rightarrow\) 108 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
407:

Let \(B\) be a Boolean algebra, \(b\) a non-zero element of \(B\) and \(\{A_i: i\in\omega\}\) a sequence of subsets of \(B\) such that for each \(i\in\omega\), \(A_i\) has a supremum \(a_i\). Then there exists an ultrafilter \(D\) in \(B\) such that \(b\in D\) and, for each \(i\in\omega\), if \(a_i\in D\), then \(D\cap\ A_i\neq\emptyset\).

43:

\(DC(\omega)\) (DC), Principle of Dependent Choices: If \(S\)  is  a relation on a non-empty set \(A\) and \((\forall x\in A) (\exists y\in A)(x S y)\)  then there is a sequence \(a(0), a(1), a(2), \ldots\) of elements of \(A\) such that \((\forall n\in\omega)(a(n)\mathrel S a(n+1))\).  See Tarski [1948], p 96, Levy [1964], p. 136.

8:

\(C(\aleph_{0},\infty)\):

16:

\(C(\aleph_{0},\le 2^{\aleph_{0}})\):  Every denumerable collection of non-empty sets  each with power \(\le  2^{\aleph_{0}}\) has a choice function.

6:

\(UT(\aleph_0,\aleph_0,\aleph_0,\Bbb R)\): The union of a denumerable  family  of denumerable subsets of \({\Bbb R}\) is denumerable.

5:

\(C(\aleph_0,\aleph_0,\Bbb R)\): Every denumerable set of non-empty denumerable subsets of \({\Bbb R}\) has a choice function.

38:

\({\Bbb R}\) is not the union of a countable family of countable sets.

108:

There is an ordinal \(\alpha\) such that \(2^{\aleph _{\alpha}}\) is not the union of a denumerable set of denumerable sets.

Comment:

Back