We have the following indirect implication of form equivalence classes:

408 \(\Rightarrow\) 146
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
408 \(\Rightarrow\) 62 clear
62 \(\Rightarrow\) 146 The axiom of choice in topology, Brunner, N. 1983d, Notre Dame J. Formal Logic
note-26

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
408:

If \(\{f_i: i\in I\}\) is a family of functions such that for each \(i\in I\), \(f_i\subseteq E\times W\), where \(E\) and \(W\) are non-empty sets, and \(\cal B\) is a filter base on \(I\) such that

  1. For all \(B\in\cal B\) and all finite \(F\subseteq E\) there is an \(i\in I\) such that \(f_i\) is defined on \(F\), and
  2. For all \(B \in\cal B\) and all finite \(F\subseteq E\) there exist at most finitely many functions on \(F\) which are restrictions of the functions \(f_i\) with \(i\in I\),  
then there is a function \(f\) with domain \(E\) such that for each finite \(F\subseteq E\) and each \(B\in\cal B\) there is an \(i\in I\) such that \(f|F = f_i|F\).

62:

\(C(\infty,< \aleph_{0})\):  Every set of non-empty finite  sets  has  a choice function.

146:

\(A(F,A1)\): For every \(T_2\) topological space \((X,T)\), if \(X\) is a continuous finite to one image of an A1 space then \((X,T)\) is  an A1 space. (\((X,T)\) is A1 means if \(U \subseteq  T\) covers \(X\) then \(\exists f : X\rightarrow U\) such that \((\forall x\in X) (x\in f(x)).)\)

Comment:

Back