We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
113 \(\Rightarrow\) 8 |
Tychonoff's theorem implies AC, Kelley, J.L. 1950, Fund. Math. Products of compact spaces in the least permutation model, Brunner, N. 1985a, Z. Math. Logik Grundlagen Math. |
8 \(\Rightarrow\) 16 | clear |
16 \(\Rightarrow\) 6 |
L’axiome de M. Zermelo et son rˆole dans la th´eorie des ensembles et l’analyse, Sierpi'nski, W. 1918, Bull. Int. Acad. Sci. Cracovie Cl. Math. Nat. |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
113: | Tychonoff's Compactness Theorem for Countably Many Spaces: The product of a countable set of compact spaces is compact. |
8: | \(C(\aleph_{0},\infty)\): |
16: | \(C(\aleph_{0},\le 2^{\aleph_{0}})\): Every denumerable collection of non-empty sets each with power \(\le 2^{\aleph_{0}}\) has a choice function. |
6: | \(UT(\aleph_0,\aleph_0,\aleph_0,\Bbb R)\): The union of a denumerable family of denumerable subsets of \({\Bbb R}\) is denumerable. |
Comment: