We have the following indirect implication of form equivalence classes:

426 \(\Rightarrow\) 38
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
426 \(\Rightarrow\) 8 On first and second countable spaces and the axiom of choice, Gutierres, G 2004, Topology and its Applications.
8 \(\Rightarrow\) 16 clear
16 \(\Rightarrow\) 6 L’axiome de M. Zermelo et son rˆole dans la th´eorie des ensembles et l’analyse, Sierpi'nski, W. 1918, Bull. Int. Acad. Sci. Cracovie Cl. Math. Nat.
6 \(\Rightarrow\) 5 L’axiome de M. Zermelo et son rˆole dans la th´eorie des ensembles et l’analyse, Sierpi'nski, W. 1918, Bull. Int. Acad. Sci. Cracovie Cl. Math. Nat.
5 \(\Rightarrow\) 38 Non-constructive properties of the real numbers, Howard, P. 2001, Math. Logic Quart.

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
426:

If \((X,\cal T) \) is a first countable topological space and \((\cal B(x))_{x\in X}\) is a family such that for all \(x \in X\), \(\cal B(x)\) is a local base at \(x\), then there is a family \(( \cal V(x))_{x\in X}\) such that for every \(x \in X\), \(\cal V(x)\) is a countable local base at \(x\) and \(\cal V(x) \subseteq \cal B(x)\).

8:

\(C(\aleph_{0},\infty)\):

16:

\(C(\aleph_{0},\le 2^{\aleph_{0}})\):  Every denumerable collection of non-empty sets  each with power \(\le  2^{\aleph_{0}}\) has a choice function.

6:

\(UT(\aleph_0,\aleph_0,\aleph_0,\Bbb R)\): The union of a denumerable  family  of denumerable subsets of \({\Bbb R}\) is denumerable.

5:

\(C(\aleph_0,\aleph_0,\Bbb R)\): Every denumerable set of non-empty denumerable subsets of \({\Bbb R}\) has a choice function.

38:

\({\Bbb R}\) is not the union of a countable family of countable sets.

Comment:

Back