We have the following indirect implication of form equivalence classes:

39 \(\Rightarrow\) 6
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
39 \(\Rightarrow\) 8 clear
8 \(\Rightarrow\) 16 clear
16 \(\Rightarrow\) 6 L’axiome de M. Zermelo et son rˆole dans la th´eorie des ensembles et l’analyse, Sierpi'nski, W. 1918, Bull. Int. Acad. Sci. Cracovie Cl. Math. Nat.

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
39:

\(C(\aleph_{1},\infty)\): Every set \(A\) of non-empty sets such that \(\vert A\vert = \aleph_{1}\) has a choice function. Moore, G. [1982], p. 202.

8:

\(C(\aleph_{0},\infty)\):

16:

\(C(\aleph_{0},\le 2^{\aleph_{0}})\):  Every denumerable collection of non-empty sets  each with power \(\le  2^{\aleph_{0}}\) has a choice function.

6:

\(UT(\aleph_0,\aleph_0,\aleph_0,\Bbb R)\): The union of a denumerable  family  of denumerable subsets of \({\Bbb R}\) is denumerable.

Comment:

Back