We have the following indirect implication of form equivalence classes:

359 \(\Rightarrow\) 369
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
359 \(\Rightarrow\) 20 clear
20 \(\Rightarrow\) 101 Partition principles and infinite sums of cardinal numbers, Higasikawa, M. 1995, Notre Dame J. Formal Logic
101 \(\Rightarrow\) 100 clear
100 \(\Rightarrow\) 369 Communication sur les recherches de la th'eorie des ensembles, Lindenbaum, A. 1926, C. R. Soc. Sci. Lett. Varsovie

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
359:

If \(\{A_{x}: x\in S\}\) and \(\{B_{x}: x\in S\}\) are families  of pairwise disjoint sets and \( |A_{x}| \le |B_{x}|\) for all \(x\in S\), then \(|\bigcup_{x\in S}A_{x}| \le |\bigcup_{x\in S} B_{x}|\).

20:

If \(\{A_{x}: x \in S \}\) and \(\{B_{x}: x \in  S\}\) are families  of pairwise disjoint sets and \( |A_{x}| = |B_{x}|\) for all \(x\in S\), then \(|\bigcup_{x\in S}A_{x}| = |\bigcup_{x\in S} B_{x}|\). Moore [1982] (1.4.12 and 1.7.8).

101:

Partition Principle:  If \(S\) is a partition of \(M\), then \(S \precsim M\).

100:

Weak Partition Principle:  For all sets \(x\) and \(y\), if \(x\precsim^* y\), then it is not the case that \(y\prec x\).

369:

If \(\Bbb R\) is partitioned into two sets, at least one of them has cardinality \(2^{\aleph_0}\).

Comment:

Back