This non-implication,
Form 420 \( \not \Rightarrow \)
Form 21,
whose code is 6,
is constructed around a proven non-implication as follows:
Note: This non-implication is actually a code 4, as this non-implication satisfies the
transferability criterion. Click
Transfer details for all the details)
Hypothesis | Statement |
---|---|
Form 23 | <p> \((\forall \alpha)(UT(\aleph_{\alpha},\aleph_{\alpha}, \aleph_{\alpha}))\): For every ordinal \(\alpha\), if \(A\) and every member of \(A\) has cardinality \(\aleph_{\alpha}\), then \(|\bigcup A| = \aleph _{\alpha }\). </p> |
Conclusion | Statement |
---|---|
Form 29 | If \(|S| = \aleph_{0}\) and \(\{A_{x}: x\in S\}\) and \(\{B_{x}: x\in S\}\) are families of pairwise disjoint sets and \(|A_{x}| = |B_{x}|\) for all \(x\in S\), then \(|\bigcup^{}_{x\in S} A_{x}| = |\bigcup^{}_{x\in S} B_{x}|\). <a href="/books/2">Moore, G. [1982]</a>, p 324. </p> |
The conclusion Form 420 \( \not \Rightarrow \) Form 21 then follows.
Finally, the
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal N39\) Howard's Model II | \(A\) is denumerable and is a disjoint union\(\bigcup_{i\in\omega}B_i\cup\bigcup_{i\in\omega}C_i\), where for all\(i\in\omega, |B_i|=|C_i|=\aleph_0\) |