This non-implication, Form 108 \( \not \Rightarrow \) Form 303, whose code is 6, is constructed around a proven non-implication as follows:
Note: This non-implication is actually a code 4, as this non-implication satisfies the transferability criterion. Click Transfer details for all the details)

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 1890, whose string of implications is:
    23 \(\Rightarrow\) 27 \(\Rightarrow\) 31 \(\Rightarrow\) 6 \(\Rightarrow\) 5 \(\Rightarrow\) 38 \(\Rightarrow\) 108
  • A proven non-implication whose code is 5. In this case, it's Code 3: 71, Form 23 \( \not \Rightarrow \) Form 344 whose summary information is:
    Hypothesis Statement
    Form 23 <p> \((\forall \alpha)(UT(\aleph_{\alpha},\aleph_{\alpha}, \aleph_{\alpha}))\): For every ordinal \(\alpha\), if \(A\) and every member of \(A\) has cardinality \(\aleph_{\alpha}\), then \(|\bigcup A| = \aleph _{\alpha }\). </p>

    Conclusion Statement
    Form 344 <p> If \((E_i)_{i\in I}\) is a family of non-empty sets, then there is a family \((U_i)_{i\in I}\) such that \(\forall i\in I\), \(U_i\) is an ultrafilter on \(E_i\). </p>

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 4091, whose string of implications is:
    303 \(\Rightarrow\) 50 \(\Rightarrow\) 14 \(\Rightarrow\) 123 \(\Rightarrow\) 344

The conclusion Form 108 \( \not \Rightarrow \) Form 303 then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N1\) The Basic Fraenkel Model The set of atoms, \(A\) is denumerable; \(\cal G\) is the group of all permutations on \(A\); and \(S\) isthe set of all finite subsets of \(A\)
\(\cal N12(\aleph_1)\) A variation of Fraenkel's model, \(\cal N1\) Thecardinality of \(A\) is \(\aleph_1\), \(\cal G\) is the group of allpermutations on \(A\), and \(S\) is the set of all countable subsets of \(A\).In \(\cal N12(\aleph_1)\), every Dedekind finite set is finite (9 is true),but the \(2m=m\) principle (3) is false
\(\cal N12(\aleph_2)\) Another variation of \(\cal N1\) Change "\(\aleph_1\)" to "\(\aleph_2\)" in \(\cal N12(\aleph_1)\) above
\(\cal N24\) Hickman's Model I This model is a variation of \(\cal N2\)
\(\cal N24(n)\) An extension of \(\cal N24\) to \(n\)-element sets, \(n>1\).\(A=\bigcup B\), where \( B=\{b_i: i\in\omega\}\) is a pairwise disjoint setof \(n\)-element sets \(\cal G\) is the group of all permutations of \(A\)which are permutations of \(B\); and \(S\) is the set of all finite subsets of\(A\)
\(\cal N26\) Brunner/Pincus Model, a variation of \(\cal N2\) The set ofatoms \(A=\bigcup_{n\in\omega} P_n\), where the \(P_n\)'s are pairwisedisjoint denumerable sets; \(\cal G\) is the set of all permutations\(\sigma\) on \(A\) such that \(\sigma(P_n)=P_n\), for all \(n\in\omega\); and \(S\)is the set of all finite subsets of \(A\)
\(\cal N33\) Howard/H\.Rubin/J\.Rubin Model \(A\) is countably infinite;\(\precsim\) is a dense linear ordering on \(A\) without first or lastelements (\((A,\precsim) \cong (\Bbb Q,\le)\)); \(\cal G\) is the group of allorder automorphisms on \((A,\precsim)\); and \(S\) is the set of all boundedsubsets of \(A\)

Edit | Back