Fraenkel \(\cal N4\): The Mathias/Pincus Model I | Historical notes

Description: \(A\) is countably infinite;\(\precsim\) is a universal homogeneous partial ordering on \(A\) (SeeJech [1973b] p 101 for definitions.); \(\cal G\) is the group ofall order automorphisms on \((A,\precsim)\); and \(S\) is the set of allfinite subsets of \(A\)

Parameter(s): This model does not depend on parameters

All Forms Known to be True in \(\cal N4\):
390, 389, 371, 369, 368, 367, 366, 364, 363, 362, 361, 337, 316, 315, 313, 309, 307, 306, 305, 294, 289, 280, 273, 272, 252, 251, 223, 222, 212, 211, 208, 206, 203, 199(\(n\)), 197, 194, 191, 190, 189, 185, 182, 170, 169, 145, 142, 139, 137-k, 130, 127, 119, 118, 108, 104, 94, 93, 92, 91, 90, 84, 79, 77, 74, 70, 64, 58, 51, 38, 37, 35, 34, 25, 19, 13, 6, 5, 0,

All Forms Known to be False in \(\cal N4\):
430-p, 427, 426, 407, 388, 384, 359, 347, 346, 345, 335-n, 334, 333, 328, 317, 303, 295, 286, 264, 262, 261, 260, 259, 258, 257, 256, 255, 239, 218, 215, 214, 202, 193, 192, 188, 181, 174-alpha, 168, 161, 152, 149, 133, 129, 126, 114, 113, 109, 106, 101, 100, 95-F, 89, 87-alpha, 86-alpha, 83, 82, 71-alpha, 67, 66, 50, 49, 44, 43, 41, 40, 39, 30, 28-p, 20, 15, 14, 9, 8, 7, 4, 3, 2, 1,

A minimial list of forms whose truth in this model imply all others that are true in this model: 64-90-191

Falses that are implied by others list: 83-89-114-133

References for models trues falses list: References Mathias [1967], Pincus [1969], Brunner [1985a],Felgner/Jech [1973], Jech [1973b], Krom [1986], notes 18 and 105.

Back