Fraenkel \(\cal N4\): The Mathias/Pincus Model I | Historical notes
Description: \(A\) is countably infinite;\(\precsim\) is a universal homogeneous partial ordering on \(A\) (SeeJech [1973b] p 101 for definitions.); \(\cal G\) is the group ofall order automorphisms on \((A,\precsim)\); and \(S\) is the set of allfinite subsets of \(A\)
Parameter(s): This model does not depend on parameters
All Forms Known to be True in \(\cal N4\):
390,
389,
371,
369,
368,
367,
366,
364,
363,
362,
361,
337,
316,
315,
313,
309,
307,
306,
305,
294,
289,
280,
273,
272,
252,
251,
223,
222,
212,
211,
208,
206,
203,
199(\(n\)),
197,
194,
191,
190,
189,
185,
182,
170,
169,
145,
142,
139,
137-k,
130,
127,
119,
118,
108,
104,
94,
93,
92,
91,
90,
84,
79,
77,
74,
70,
64,
58,
51,
38,
37,
35,
34,
25,
19,
13,
6,
5,
0,
All Forms Known to be False in \(\cal N4\):
430-p,
427,
426,
407,
388,
384,
359,
347,
346,
345,
335-n,
334,
333,
328,
317,
303,
295,
286,
264,
262,
261,
260,
259,
258,
257,
256,
255,
239,
218,
215,
214,
202,
193,
192,
188,
181,
174-alpha,
168,
161,
152,
149,
133,
129,
126,
114,
113,
109,
106,
101,
100,
95-F,
89,
87-alpha,
86-alpha,
83,
82,
71-alpha,
67,
66,
50,
49,
44,
43,
41,
40,
39,
30,
28-p,
20,
15,
14,
9,
8,
7,
4,
3,
2,
1,
A minimial list of forms whose truth in this model imply all others that are true in this model: 64-90-191
Falses that are implied by others list: 83-89-114-133
References for models trues falses list: References Mathias [1967], Pincus [1969], Brunner [1985a],Felgner/Jech [1973], Jech [1973b], Krom [1986], notes 18 and 105.
Back