Hypothesis: HR 185:

Every linearly ordered Dedekind finite set is finite.

Conclusion: HR 328:

\(MC(WO,\infty)\): For  every well ordered set \(X\) such that for all \(x\in X\), \(|x|\ge 1\), there is a function \(f\) such that and for every \(x\in X\), \(f(x)\) is a finite, non-empty subset of \(x\). (See Form 67.)

List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal M1(\langle\omega_1\rangle)\) Cohen/Pincus Model Pincus extends the methods of Cohen and adds a generic \(\omega_1\)-sequence, \(\langle I_{\alpha}: \alpha\in\omega_1\rangle\), of denumerable sets, where \(I_0\) is a denumerable set of generic reals, each \(I_{\alpha+1}\) is a generic set of enumerations of \(I_{\alpha}\), and for a limit ordinal \(\lambda\),\(I_{\lambda}\) is a generic set of choice functions for \(\{I_{\alpha}:\alpha \le \lambda\}\)
\(\cal M6\) Sageev's Model I Using iterated forcing, Sageev constructs \(\cal M6\) by adding a denumerable number of generic tree-like structuresto the ground model, a model of \(ZF + V = L\)
\(\cal M29\) Pincus' Model II Pincus constructs a generic extension \(M[I]\) of a model \(M\) of \(ZF +\) class choice \(+ GCH\) in which \(I=\bigcup_{n\in\omega}I_n\), \(I_{-1}=2\) and \(I_{n+1}\) is a denumerable set of independent functions from \(\omega\) onto \(I_n\)
\(\cal M43\) Pincus' Model V This is the model of <a href="/articles/Pincus-1977a">Pincus [1977a]</a>, Theorem 2.1 \((A)\)
\(\cal M44\) Pincus' Model VI This is the model of <a href="/articles/Pincus-1977a">Pincus [1977a]</a>, Theorem 2.1 \((B)\)
\(\cal M45\) Pincus' Model VII This is the model of <a href="/articles/Pincus-1977a">Pincus [1977a]</a>, Theorem 2.1 \((C)\)
\(\cal N1\) The Basic Fraenkel Model The set of atoms, \(A\) is denumerable; \(\cal G\) is the group of all permutations on \(A\); and \(S\) isthe set of all finite subsets of \(A\)
\(\cal N4\) The Mathias/Pincus Model I \(A\) is countably infinite;\(\precsim\) is a universal homogeneous partial ordering on \(A\) (See<a href="/articles/Jech-1973b">Jech [1973b]</a> p 101 for definitions.); \(\cal G\) is the group ofall order automorphisms on \((A,\precsim)\); and \(S\) is the set of allfinite subsets of \(A\)
\(\cal N15\) Brunner/Howard Model I \(A=\{a_{i,\alpha}: i\in\omega\wedge\alpha\in\omega_1\}\)
\(\cal N24\) Hickman's Model I This model is a variation of \(\cal N2\)
\(\cal N24(n)\) An extension of \(\cal N24\) to \(n\)-element sets, \(n>1\).\(A=\bigcup B\), where \( B=\{b_i: i\in\omega\}\) is a pairwise disjoint setof \(n\)-element sets \(\cal G\) is the group of all permutations of \(A\)which are permutations of \(B\); and \(S\) is the set of all finite subsets of\(A\)
\(\cal N26\) Brunner/Pincus Model, a variation of \(\cal N2\) The set ofatoms \(A=\bigcup_{n\in\omega} P_n\), where the \(P_n\)'s are pairwisedisjoint denumerable sets; \(\cal G\) is the set of all permutations\(\sigma\) on \(A\) such that \(\sigma(P_n)=P_n\), for all \(n\in\omega\); and \(S\)is the set of all finite subsets of \(A\)
\(\cal N38\) Howard/Rubin Model I Let \((A,\le)\) be an ordered set of atomswhich is order isomorphic to \({\Bbb Q}^\omega\), the set of all functionsfrom \(\omega\) into \(\Bbb Q\) ordered by the lexicographic ordering
\(\cal N40\) Howard/Rubin Model II A variation of \(\cal N38\)
\(\cal N41\) Another variation of \(\cal N3\) \(A=\bigcup\{B_n; n\in\omega\}\)is a disjoint union, where each \(B_n\) is denumerable and ordered like therationals by \(\le_n\)
\(\cal N55\) Keremedis/Tachtsis Model: The set of atoms \(A=\bigcup \{A_n: n\in \omega\}\), where \(A_n=\{a_{n,x}: x\in B(0,\frac1n)\}\) and \(B(0,\frac1n)= \{x: \rho(x,0)=\frac1n\}\), where \(\rho\) is the Euclidean metric The group of permutations \(\cal G\), is the group of all rotations of the \(A_n\) through an angle \(\theta\in [0,2\pi)\), and supports are finite
\(\cal N58\) Keremedis/Tachtsis Model 2: For each \(n\in\omega-\{0\}\), let\(A_n=\{({i\over n}) (\cos t,\sin t): t\in [0.2\pi)\}\) and let the set of atoms\(A=\bigcup \{A_n: n\in\omega-\{0\}\}\) \(\cal G\) is the group of allpermutations on \(A\) which rotate the \(A_n\)'s by an angle \(\theta_n\), andsupports are finite

Code: 3

Comments:


Edit | Back