Hypothesis: HR 316:

If a linearly ordered set \((A,\le)\) has the fixed point property then \((A,\le)\) is complete. (\((A,\le)\)  has the fixed point property if every function \(f:A\to A\) satisfying \((x\le y \Rightarrow f(x)\le f(y))\) has a fixed point, and (\((A,\le)\) is complete if every subset of \(A\) has a least upper bound.)

Conclusion: HR 192:

\(EP\) sets: For every set \(A\) there is a projective set \(X\) and a function from \(X\) onto \(A\).

List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N1\) The Basic Fraenkel Model The set of atoms, \(A\) is denumerable; \(\cal G\) is the group of all permutations on \(A\); and \(S\) isthe set of all finite subsets of \(A\)
\(\cal N2\) The Second Fraenkel Model The set of atoms \(A=\{a_i : i\in\omega\}\) is partitioned into two element sets \(B =\{\{a_{2i},a_{2i+1}\} : i\in\omega\}\). \(\mathcal G \) is the group of all permutations of \( A \) that leave \( B \) pointwise fixed and \( S \) is the set of all finite subsets of \( A \).
\(\cal N2(n)\) A generalization of \(\cal N2\) This is a generalization of\(\cal N2\) in which there is a denumerable set of \(n\) element sets for\(n\in\omega - \{0,1\}\)
\(\cal N2^*(3)\) Howard's variation of \(\cal N2(3)\) \(A=\bigcup B\), where\(B\) is a set of pairwise disjoint 3 element sets, \(T_i = \{a_i, b_i,c_i\}\)
\(\cal N4\) The Mathias/Pincus Model I \(A\) is countably infinite;\(\precsim\) is a universal homogeneous partial ordering on \(A\) (See<a href="/articles/Jech-1973b">Jech [1973b]</a> p 101 for definitions.); \(\cal G\) is the group ofall order automorphisms on \((A,\precsim)\); and \(S\) is the set of allfinite subsets of \(A\)
\(\cal N6\) Levy's Model I \(A=\{a_n : n\in\omega\}\) and \(A = \bigcup \{P_n: n\in\omega\}\), where \(P_0 = \{a_0\}\), \(P_1 = \{a_1,a_2\}\), \(P_2 =\{a_3,a_4,a_5\}\), \(P_3 = \{a_6,a_7,a_8,a_9,a_{10}\}\), \(\cdots\); in generalfor \(n>0\), \(|P_n| = p_n\), where \(p_n\) is the \(n\)th prime
\(\cal N24\) Hickman's Model I This model is a variation of \(\cal N2\)
\(\cal N24(n)\) An extension of \(\cal N24\) to \(n\)-element sets, \(n>1\).\(A=\bigcup B\), where \( B=\{b_i: i\in\omega\}\) is a pairwise disjoint setof \(n\)-element sets \(\cal G\) is the group of all permutations of \(A\)which are permutations of \(B\); and \(S\) is the set of all finite subsets of\(A\)
\(\cal N26\) Brunner/Pincus Model, a variation of \(\cal N2\) The set ofatoms \(A=\bigcup_{n\in\omega} P_n\), where the \(P_n\)'s are pairwisedisjoint denumerable sets; \(\cal G\) is the set of all permutations\(\sigma\) on \(A\) such that \(\sigma(P_n)=P_n\), for all \(n\in\omega\); and \(S\)is the set of all finite subsets of \(A\)
\(\cal N37\) A variation of Blass' model, \(\cal N28\) Let \(A=\{a_{i,j}:i\in\omega, j\in\Bbb Z\}\)
\(\cal N50(E)\) Brunner's Model III \(E\) is a finite set of prime numbers.For each \(p\in E\) and \(n\in\omega\), let \(A_{p,n}\) be a set of atoms ofcardinality \(p^n\)
\(\cal N51\) Weglorz/Brunner Model Let \(A\) be denumerable and \(\cal G\)be the group of all permutations of \(A\)

Code: 5

Comments:


Edit | Back